AMINYLOXIDE (NITROXIDE) XXVIII 1)

ERMITTLUNG DER SPINDICHTEVERTEILUNG IN IMIDAZOLINYL-N-OXIDEN UND IMIDAZOLINYL-N.N'-DIOXIDEN MIT HILFE VON ¹⁷O-MARKIERUNG Hans Günter Aurich ^{x)}, Hartmut Czepluch ²⁾ und Klaus Hahn Fachbereich Chemie der Philipps-Universität Marburg, Lahnberge,

D-3550 Marburg/Lahn, Germany

(Received in Germany 16 September 1977; received in UK for publication 17 October 1977)

Mit Hilfe von ¹⁷O-Markierungen und unter Anwendung der vereinfachten Beziehungen (1) und (2) mit den angeführten Q-Parametern konnten wir kürzlich erstmals experimentell gesicherte Aussagen über die Spindichteverteilung in Aminyloxiden mit erweitertem Delokalisierungsbereich machen ³⁾.

(1)
$$a^0 = Q_{00}^0 \cdot g^0 \qquad Q_{00}^0 = 35,3 \text{ G}$$

(2)
$$a^{N} = Q_{NN}^{N} \cdot Q^{N} \qquad Q_{NN}^{N} = 33.1 G$$

Wir haben diese Untersuchungen auf die von Ullman ⁴⁾ dargestellten Imidazolinyl-N-oxide <u>2</u> und Imidazolinyl-N.N'-dioxide <u>3</u> ausgedehnt, weil uns insbesondere die Spindichteverteilung in den Amidinyl-N.N'-dioxiden (Nitronyl-nitroxiden) <u>3</u>, die ein symmetrisches 5-Zentren-7-m-Elektronen-System repräsentieren, von Interesse erschien.

a:
$$R = C_6H$$
b: $R = H$
c: $R = CH_3$

Zu diesem Zwecke wurden aus <u>la</u> die ¹⁷O-markierten Radikale <u>2a</u> und <u>3a</u> erzeugt und ESR-spektroskopisch untersucht. <u>la</u> wurde analog zu G. Forssel ⁵⁾ aus 2,3-Diamino-2,3-dimethylbutan und Thiobenzamid dargestellt.

Löst man 10 mg des Imidazolins la in etwa 1 ml eines Gemisches aus Toluol und

Di-tert-butylperoxid (2:1), kondensiert etwa 4 ml mit dem Isotop ^{17}O angereichertes Sauerstoffgas (10 % ^{17}O -Gehalt) in das ESR-Röhrchen und bestrahlt anschließend mit einer Quecksilber-Höchstdrucklampe (HBO500), so läßt sich nach dem Entgasen ESR-spektroskopisch das partiell ^{17}O -markierte $\underline{2a}$ nachweisen. Eine Weiteroxidation zu $\underline{3a}$ ließ sich unter diesen Bedingungen nicht durchführen.

Benutzt man dagegen ein Gemisch aus Cumol und Di-tert-butylperoxid (2:1) als Lösungsmittel und bestrahlt bei tiefer Temperatur in eingefrorenem Zustand, so entsteht partiell ¹⁷O-markiertes <u>3a</u>. Eine ¹⁷O-Markierung der Radikale <u>2c</u> bzw. 3c gelang auf diesem Wege nicht.

Die folgenden Kopplungskonstanten wurden ermittelt:

$$\underline{2a}$$
: $a^{O} = 18,1$ $a^{N}_{(NO)} = 9,15$ $a^{N} = 4,25 G$
 $\underline{3a}$: $a^{O} = 12,1$ $a^{N} = 7,3 G$

Mit Hilfe der Beziehungen (1) und (2) wurden damit die Spindichten der Radikale 2a und 3a bestimmt (Tabelle 1 und 2). Für die Ermittlung von 9^N_4 am Iminostickstoff von 2 wurde wie bei den acyclischen Amidinyl-N-oxiden 3^N_1 $2^N_{NN} = 15.3$ G verwandt. Tabelle 2 enthält außerdem für 3a die von Kreilick 4^N_1 bestimmten Spindichten im Phenylkern. Addiert man die experimentellen Spindichten von 3a und setzt für die fehlenden Werte an den verbrückenden C-Atomen des Imidazolinringes 9^N_3 und des Phenylringes 9^N_3 , die theoretisch berechneten Werte $9^N_3 = 0.005$ und $9^N_3 = 0.007$ ein, so ergibt sich als Gesamtspindichte 10×10^N_1 = 0.992. Damit wird gezeigt, daß die vereinfachten Beziehungen (1) und (2) mit den angegebenen Q-Parametern sich auch zur Ermittlung der Spindichteverteilung in Amidinyl-N.N'-dioxiden (Nitronyl-nitroxiden) anwenden lassen.

Dagegen kann ho_3^C für die Radikale ho_2^D und ho_3^C sowie ho_3^D und ho_3^C leicht gefunden werden ($ho_{C-H}^H = -27 \cdot
ho_3^C$) bzw. $ho_{C-CH_3}^H = 28 \cdot
ho_3^C$). Durch Summierung der Spindichten aller Positionen läßt sich in diesen Fällen ho_3^O aus der Differenz zur Gesamtspindichte ho_3^C ho_3^C = 1 ermitteln. Die so erhaltenen Werte ho_3^O für ho_3^C und ho_3^C bzw. ho_3^C und ho_3^C stimmen sehr gut mit den experimentell bestimmten Werten für ho_3^C abzw. ho_3^C überein. Daraus läßt sich schließen, daß in den Radikalen ho_3^C und ho_3^C der jeweilige Substituent R die Spindichteverteilung praktisch kaum beeinflußt.

Tab. 1: Spindichteverteilung in den Imidazolinyl-N-oxide	Tab.	ellung in den Imida	linyl-N-oxiden
--	------	---------------------	----------------

		90	9 ^N	9 ^N	9 [°] 3
<u>2a</u>	exp.	0,513	0,276	0,278	_
	ber.	0,488	0,268	0,262	- 0,016
<u>2b</u>	exp. a)	(0,502) ^{b)}	0,266	0,288	- 0,056
<u>2c</u>	exp. a)	(0,536) ^{b)}	0,279	0,255	- 0,070

- a) ermittelt mit den Kopplungskonstanten aus 9)
- b) ermittelt mit Hilfe der Bedingung $\sum Q = 1$

Tab. 2: Spindichteverteilung in den Imidazolinyl-N.N'-dioxiden 3

	_	۶°	· γ ^N	С 9 з	93',C6H5	Po-C6H5	9m-C6H5	9p-C6H5
2-	exp.	0,342	0,220			- 0,0165 ⁶⁾		
<u>3a</u>	ber.	0,331	0,245	- 0,105	0,007	- 0,019	0,001	- 0,017
<u>3b</u>	exp.a)	(0,344) ^{b)}	0,219	- 0,127				
<u>3c</u>	exp.a)	(0,335) ^{b)}	0,224	- 0,118				

- a) ermittelt mit den Kopplungskonstanten aus 10)
- b) siehe Tab. 1 b)

Für die Spindichteberechnungen von $\underline{2a}$ und $\underline{3a}$ nach der Methode von McLachlan 11) wurden für $\alpha_{\mathbf{x}} = \alpha_{\mathbf{c}} + h_{\mathbf{x}}\beta_{\mathbf{c}\mathbf{c}}$ und $\beta_{\mathbf{x}\mathbf{y}} = k_{\mathbf{x}\mathbf{y}}$, $\beta_{\mathbf{c}\mathbf{c}}$ die folgenden Parameter verwandt: $\underline{2a}$: $\lambda = 1, 2$ $h_0^1 = 1, 2$ $h_N^2 = 1, 4$ $h_N^4 = 0, 4$ $k_{NO}^{1,2} = 1, 6$ $k_{N-C}^{2,3} = 1, 0$ $k_{C-N}^{3,4} = 1, 3$ $k_{C-C}^{3,3} = 1, 0$

3a:
$$\lambda = 1,2$$
 $h_0^1 = 1,2$ $h_N^2 = 1,6$ $k_{NO}^{1/2} = 1,6$ $k_{N=C}^{2/3} = 1,1$ $k_{C-C}^{3/3} = 1,0$

Diese Parameter sind allgemein zur Spindichteberechnung auf die verschiedensten Aminyloxid-Typen anwendbar $^{1)}$, lediglich für $\underline{3a}$ mußte h_{N} auf 1,6 erhöht werden, was wohl auf die gegenseitige Beeinflussung der beiden Aminyloxidgruppen und die damit verbundene Erhöhung des Coulomb-Potentials an den Stickstoffatomen zurückzuführen ist.

Zusammenfassend läßt sich feststellen, daß in den Imidazolinyl-oxiden $\underline{2}$ die Spindichte am Sauerstoffatom etwas über 0,5 beträgt, während sie an den beiden Stickstoffatomen zwischen 0,25 und 0,3 liegt. In den um ein Sauerstoffatom erweiterten Radikalen $\underline{3}$ ist 9^N mit 0,22 für die beiden Stickstoffatome ziemlich genau halb so groß wie für Dialkyl-aminyloxide ($9^N\approx0.45^{-3}$). 9^O ist dagegen mit Werten zwischen 0,33 und 0,345 größer als die Hälfte des Wertes der Dialkylaminyloxide ($9^O\approx0.55^{-3}$), was durch die negative Spindichte $9^C\approx-0.1$ am mittleren C-Atom bedingt ist. Eine ganz analoge Spindichteverteilung mit leicht verringertem 9^N und geringfügig erhöhtem 9^O läßt sich auch für die erst kürzlich beschriebenen 1,3-Diazacyclohexen-lyl-l-N.N'-dioxide 9^O ableiten.

D'Anna ¹³⁾ hatte vor längerer Zeit für die Imidazolinyl-dioxide $\frac{3}{9}$ vu 0,3 bestimmt und daraus $\frac{9}{9}$ = 0,13 abgeleitet. Diese Ergebnisse stehen nicht in Einklang mit den unsrigen.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

Literatur:

- Aminyloxide XXVII: H.G. Aurich, E. Deuschle und I. Lotz, J. Chem. Research 1977, im Druck
- 2) Teil der Dissertation H. Czepluch, Marburg, in Vorbereitung
- 3) H.G. Aurich, K. Hahn, K. Stork und W. Weiss, Tetrahedron 33, 969 (1977)
- E.F. Ullman, J.H. Osiecki, D.G.B. Boocock und R. Darcy, J. Am. Chem. Soc. 94, 7049 (1972) und frühere Arbeiten.
- 5) G. Forssel, Ber. Deut. Chem. Ges. <u>25</u>, 2132 (1892)
- 6) J.W. Neely, G.F. Hatch und R.W. Kreilick, J. Am. Chem. Soc. <u>96</u>, 652 (1974)
- 7) H.M. McConnell, J. Chem. Phys. <u>24</u>, 764 (1956); L.C. Snyder und T. Amos, J. Chem. Phys. <u>42</u>, 3670 (1965)
- 8) A.D. McLachlan, Mol. Phys. 1, 233 (1958)
- 9) E.F. Ullman, L. Call und J.H. Osiecki, J. Org. Chem. 35, 3623 (1970)
- 10) D.G.B. Boocock, R. Darcy und E.F. Ullman, J. Am. Chem. Soc. <u>90</u>, 5945 (1968)
- 11) A.D. McLachlan, Mol. Phys. 3, 233 (1960)
- 12) S. Ni Ghriofa, R. Darcy und M. Conlon, JCS Perkin I 1977, 651
- 13) J.A. D'Anna und J.H. Wharton, J. Chem. Phys. <u>53</u>, 4047 (1970)